metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Xu Guo,* Xiu-Juan Zhou, Zhi-Xing Lin and Jia-Ming Liu

Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China

Correspondence e-mail: guohongxu919@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.032 wR factor = 0.071 Data-to-parameter ratio = 19.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*N*-Ferrocenylmethyl)dimethylammonium chloride dihydrate

In the title compound, $[Fe(C_5H_5)(C_8H_{13}N)]Cl\cdot 2H_2O$, Fe-C bond lengths lie in the range 2.020 (2)–2.047 (2) Å. Intermolecular N-H···Cl, O-H···Cl and O-H···O hydrogen bonds link the cations, chloride anions and water molecules into a three-dimensional hydrogen-bonded network, which stabilizes the crystal packing.

Comment

The search for ferrocene derivatives has attracted considerable attention over the last decades owing to their biological activity and applications in electrochemistry and materials science (Hall *et al.*, 1998; Li *et al.*, 2001; Welipitiya *et al.*, 1996). (Ferrocenylmethyl)dimethylamine serves as an intermediate in the syntheses of many ferrocene derivatives (Gibbons & Trotter, 1971; Winter & Wolmershäuser, 1998). In this communication, we report the crystal structure of the title compound, (I) (Fig. 1), which is a new (ferrocenylmethyl)dimethylammonium salt.

In (I), the Fe atom is bonded to the two five-membered carbon rings with Fe–C bond lengths in the range 2.020 (2)–2.047 (2) Å (Table 1). The two rings, C1–C5 and C6–C10, are nearly parallel with a dihedral angle between their mean planes of 3.3 (1)° and exhibit a nearly eclipsed conformation, as is usually found in other ferrocene derivatives (Ye *et al.*, 2005; Todd *et al.*, 2006; Guo *et al.*, 2006).

In the crystal structure, classical intermolecular $N-H\cdots Cl$, $O-H\cdots Cl$ and $O-H\cdots O$ hydrogen bonds are observed (Table 2), which link the ammonium cations, chloride anions and uncoordinated water molecules into a three-dimensional hydrogen-bonded network and stabilize the crystal packing (Fig. 2). The $N-H\cdots Cl$ hydrogen bond is similar to that found in the anhydrous compound $[Fe(C_5H_5)(C_8H_{13}N)]^+ Cl^-$ with an $(N-)H\cdots Cl$ distance of 2.18 Å (Winter & Wolmershäuser, 1998).

Experimental

A solution of NaCl (0.0292 g, 0.5 mmol) in methanol (10 ml) was added to a solution of (ferrocenylmethyl)dimethylamine (0.1214 g, 0.5 mmol) in methanol (10 ml). To this solution, dichloromethane (1.5 ml) was added dropwise and the mixture shaken for 3 h and

Received 19 June 2006 Accepted 3 July 2006

© 2006 International Union of Crystallography All rights reserved

Figure 1

View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing viewed along the c-axis direction. The intermolecular $N-H\cdots Cl$, $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds are shown as dashed lines.

concentrated under vacuum to a volume of 10 ml. Brown prismshaped crystals of (I) were obtained by slow evaporation of the solvent in air.

Crystal data

$[Fe(C_5H_5)(C_8H_{13}N)]Cl \cdot 2H_2O$	Z = 4
$M_r = 315.62$	$D_x = 1.377 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 18.116 (4) Å	$\mu = 1.16 \text{ mm}^{-1}$
b = 7.3783 (15) Å	T = 293 (2) K
c = 11.799 (2) Å	Prism, brown
$\beta = 105.17 \ (3)^{\circ}$	$0.51 \times 0.35 \times 0.34 \text{ mm}$
V = 1522.2 (6) Å ³	
Data collection	
Disalu Waissanhana ID	12000 measured noffections

Rigaku Weissenberg IP diffractometer ω scans Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 1998) $T_{\min} = 0.620, T_{\max} = 0.674$

13908 measured reflections 3501 independent reflections 2484 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$ $\theta_{\rm max} = 27.5^{\circ}$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.032$	independent and constrained
$vR(F^2) = 0.071$	refinement
S = 1.01	$w = 1/[\sigma^2(F_0^2) + (0.032P)^2]$
3501 reflections	where $P = (F_0^2 + 2F_c^2)/3$
82 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
Fable 1	
$\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$	

Salactad	bond	longthe	(Λ)
Scietteu	oonu	lungtins	(1)
			· ·

-			
Fe1-C9	2.020 (2)	Fe1-C5	2.0347 (18)
Fe1-C1	2.0248 (18)	Fe1-C3	2.044 (2)
Fe1-C8	2.027 (2)	Fe1-C7	2.044 (2)
Fe1-C2	2.0305 (19)	Fe1-C4	2.046 (2)
Fe1-C10	2.034 (2)	Fe1-C6	2.047 (2)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
O2W−H2WA···Cl1	0.84 (2)	2.32 (2)	3.161 (2)	174 (3)
$O2W - H2WB \cdots O1W$	0.85(2)	1.87 (2)	2.712 (3)	176 (3)
$N1 - HN1 \cdot \cdot \cdot Cl1^{i}$	0.96	2.13	3.0783 (18)	168
$O1W-H1WA\cdots O2W^{ii}$	0.84(2)	1.91(2)	2.744 (3)	175 (3)
$O1W-H1WB\cdots Cl1^{iii}$	0.84(2)	2.36(2)	3.195 (3)	171 (2)
$O2W - H2WA \cdots Cl1$	0.84(2)	2.32 (2)	3.161 (2)	174 (3)
$O2W - H2WB \cdots O1W$	0.84 (2)	1.87 (2)	2.712 (3)	176 (3)

Symmetry codes: (i) x, y + 1, z; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

The C-bound H atoms were positioned geometrically, with C-H =0.98, 0.97 and 0.96 Å for those on cyclopentadienyl, methylene and methyl C atoms, respectively, and refined as riding with $U_{iso}(H) =$ $1.2U_{eq}(C)$ or $1.5U_{eq}(M)$ methyl C). Atom H1N was positioned geometrically and allowed to ride on N1, with N-H = 0.96 Å and $U_{iso}(H)$ = $1.2U_{eq}(N)$. Water H atoms were located in a difference map and refined with O-H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This work was supported by grants from the Natural Science Foundation of Fujian Education Committee (No. JA05304) and financial support from Zhangzhou Normal University.

References

- Gibbons, C. S. & Trotter, J. (1971). J. Chem. Soc. A, pp. 2659-2662.
- Guo, H.-X., Yang, L.-M. & Zhang, S.-D. (2006). Acta Cryst. E62, m1338m1339.
- Hall, C. D., Sachsinger, N., Nyburg, S. C. & Steed, J. W. (1998). J. Organomet. Chem. 561, 209-219.
- Li, M., Bai, Y.-J. & Lu, J. (2001). J. Organomet. Chem. 637-639, 738-741.
- Molecular Structure Corporation (1999). TEXSAN. MSC, The Woodlands, Texas, USA.
- Rigaku (1998). RAPID-AUTO. PC Version. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
 Todd, M. H., Motevalli, M., El-Fayyoumy, S. & Richards, C. (2006). Acta Cryst. E62, m719–m720.
- Welipitiya, D., Dowben, P. A., Zhang, J., Pai, W. W. & Wendelken, J. F. (1996). Surf. Sci. 367, 20-32.
- Winter, R. F. & Wolmershäuser, G. (1998). J. Organomet. Chem. 570, 201-218. Ye, B.-X., Xu, Y., Wang, F., Fu, Y. & Song, M.-P. (2005). *Inorg. Chem. Commun.* 8, 44–47.